



# FIBER-Q®

1550 nm Fiber Coupled Acousto-Optic Modulator (Low Power Consumption)

T-M080-0.5C8J-3-F2S

The T-M080-0.5C8J-3-F2S acoustooptic modulator is designed for use as an 80 MHz frequency shifter for heterodyne interferometry or as an intensity modulator.

Gooch & Housego specialize in providing optical components for high power fiber laser and amplifier systems. In-house control of critical manufacturing processes; from crystalline material selection and orientation, cutting, polishing and anti-reflection coating through to fiber coupling, ensure our components are of the highest optical quality

In addition to the standard product shown, custom configurations are available for specialised applications



### **Key Features**

- Low insertion loss
- Compact low profile package
- Rugged hermetic design
- Stable performance
- Low power consumption
- Custom configurations available

## Applications

- Sensing (heterodyne interferometry)
- Intensity modulation





1550 NM FIBER COUPLED ACOUSTO-OPTIC MODULATOR (LOW POWER CONSUMPTION)

PEC 0173 Issue 2

December 2016 Page 1



# **General Specifications**

| Parameter                        | Min     | Max     | Typical | Comments                                                 |
|----------------------------------|---------|---------|---------|----------------------------------------------------------|
| Interaction material             | -       | -       | -       | Amtir                                                    |
| Wavelength                       | 1530 nm | 1565 nm | 1550 nm | Other wavelengths available on request                   |
| Average optical power handling   | -       | 1 W     | -       |                                                          |
| Peak optical power handling      | -       | 1 kW    | -       | Dependent on pulse width                                 |
| Insertion loss                   | -       | 2.5 dB  | -       |                                                          |
| Polarization dependant loss      | -       | 0.1 dB  | -       |                                                          |
| Extinction ratio                 | 50 dB   | -       | -       |                                                          |
| Return loss (RF ON/RF OFF)       | 40 dB   | -       | -       |                                                          |
| Rise-time/fall-time: (10% - 90%) | -       | 100 ns  | 70 ns   |                                                          |
| Frequency                        | -       | -       | 80 MHz  |                                                          |
| VSWR                             | -       | 1.5:1   | -       |                                                          |
| Input impedance                  | -       | -       | 50 Ω    |                                                          |
| RF power                         | -       | 0.4 W   | 0.3 W   | Absolute maximum rating. Higher power will cause damage. |
| Frequency shift                  | -       | -       | 80 MHz  | Upshift                                                  |
| Fiber type                       | -       | -       | -       | SMF28                                                    |
| Fiber length                     | 1.5 m   | -       | -       | 900µm PVDF sleeving                                      |
| Fiber termination                | -       | _       | -       | Bare fiber                                               |

1550 NM FIBER COUPLED ACOUSTO-OPTIC MODULATOR (LOW POWER CONSUMPTION)

PEC 0173 Issue 2 December 2016





### Other products which may be of interest

- HI REL couplers
- High power multimode combiners
- Combiners with all types of signal feedthrough fiber
- Ultra-low ratio tap couplers
- WDMs for combining signals with red pointer lasers
- OCT wideband couplers

1550 NM FIBER COUPLED ACOUSTO-OPTIC MODULATOR (LOW POWER CONSUMPTION)

PEC 0173 Issue 2 December 201